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The problem of the translational-rotational motion of a rigid body with a triaxial ellipsoid of inertia in a central gravitational 
field is considered. The body is modelled by a weightless sphere, at the ends of the three mutually perpendicular diameters of 
which there are point ma~s. It is shown that, unlike the cases when the approximate expression for the potential of the gravity 
forces is used, there are not only "trivial" steady motions of the body, for which the main central axes of inertia of the body 
coincide with the axes of the orbital system of coordinates, but also other classes of steady motions. In addition, the stability of 
these "trivial" steady motions is investigated, and the possibility of secular stability of the motions, unstable in the satellite 
approximation, is pointed out. 

1. We will consider the motion of  a body with a triaxial ellipsoid of inertia in a central Newtonian field. 
The body is modelled by a weightless sphere of  radius a, at the ends of  the three mutually orthogonal 
diameters di of which there are point masses m/2,  i = 1, 2, 3. Without loss of generality we will assume 
that m I > m 2 > m 3. 

We will introduce a fixed system of coordinates M~rl~ with origin at the attracting centre and system 
of  coordinates Ox#2r3 connected to the body with origin at the centre of  mass and axes Oxi directed 
along the above-mentioned diameters. The position of the centre of mass of the body with respect to 
the fixed system of coordinates will be defined by the spherical coordinates p, O, ¥ ,  where O is the angle 
that the radius vector p = M O  makes with the plane O ~ ,  ¥ is the angle between O~ axis and the 
projection of  the radius vector p on the O ~  plane, and p is the length of  the vector p. 

Suppose T is the mait vector directed along the vector p, while ~ is the unit vector directed along the 
Mri axis. The projections of  these vectors onto the Oxi axes will be denoted by ~/and 13i, respectively. 
They are obviously lia~ked by the relations 

Y. ~1~ = 1, X ~2i = 1, • "~,~, =sinO (1.1) 

Suppose m = m 1 + m 2 + m 3 is the mass of the body, J / =  a2(mj + ink) are its principal central moments 
of  inertia, and i # j ;'- k, (i,j,  k)  e $3, where $3 is the group o f  permutations of  the three elements (1, 
2, 3); here J1 < .]2 < J3. 

The kinetic and potential energies of the system have the form 

T = ltm(l~2 + p2v2 cos 2 0 + p202) + j,o)12 + J2to ~ + j3¢.032 ] 

U = Y~ [ ~ ( a ) +  F/(-a)], F/(a) -- - fMmi 2 (p2 + a 2 + 2apTi ) -~  

Here  f is the gravitational constant, M is the mass of the attracting centre, and to/are the projections 
of the absolute anguJlar velocity of the body co onto the OX i a x e s .  

The equations of motion of the body allow of energy and area integrals 

T + U = const, 3T / 3~/= k = const 

Assuming co = ~ + to*, where to* is the instantaneous angular velocity of the body in its motion in 
an orbital system of coordinates and ignoring the cyclic coordinate ~, we will introduce the Routh 
function 
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R= T - U - k ~ -  R2 + RI + Ro 

Here Rs is the homogeneous part of the function R of degree s with respect to 15, 0, ~*.  Here, the change 
potential energy of the body W = -R0 takes the form W = U + k'/(2S), where 

S = mp 2 cos  2 O + Jl[~ 2 + J2[~ 2 + .13[~ 2 

By Routh's theorem the steady motions of the system are denoted by the critical points of the function 
W (see, for example, [1-3]). 

Since the direction cosines are linked by relations (1.1), instead of W we will henceforth consider 
the function 

W. =W+Z(E Yi~i-sinO)+o(E y 2 - 1 ) / 2 + v ( Y  1~ 2 - 1 ) / 2  

where ~., o, v are undetermined Lagrange multipliers. 

2. The conditions for the function W. to be stationary lead to the following equations 

= k2mp cos 2 0 
~W.  fM y. mi((P+aTi)Pi(a)+(p_ayi)pi(_a))  - S 2 

3p 2 
= 0 (2.1) 

OW. = k2mpsin20 
- Z. cos 0 = 0 (2.2) 

~}0 2S  2 

gw. : ,,fMp 
~,~ 2 mi (Pi (a) - Pi (-a))  + kiwi + tYYi = 0 

/)w. k 2 

Here P/(a) = (p2 -I- a 2 + 2ap~/) -3/2. 

Solutions of the form 

(2.3) 

(2.4) 

y ~ = l ,  13ff=l ( i~j) ,  y j = y k = ~ i = ~ k = O  

0----0, ~,----0, 0 = 0 0 i ,  V = V o j  (2.5) 

obviously satisfy system (2.2)-(2.4), (1.1) identically with respect to p. 
The solutions correspond to steady motions of the body for which its centre of mass moves in a circular 

orbit, one of the principal central axes of inertia of which is directed along the radius vector, while the 
other two are directed along the tangent and binormal to the orbit• Equation (2.1) then takes the form 

k 2 = CyO(P) (2.6) 

C =  fMS2 YO (p)= mi p2 + a  2 my +m k 
mp ' p(p2 _ a 2)2 + (p2 + a 2)3/2 

the constants %i and v0/are defined by the relations 

ffOi = fMmi a2 p(3p2 + a2 ) k2jj 
( p 2 _ a  2)3 , Voj = S 2 (2.7) 

0 , 0 When p > a there is a unique point Pi such that Yi([i)  = 0. Consequently, Eq. (2.6), when 
2 ~ ~ ~/ 2 0 0 0 0 p > a has no solutions for k 2 < k r = Yi;(Pi), has a unique solution p = p/. for k 2 = k r and two 

+ o2 ~ % ~ 0 , % , ~ 0 solutions p = p~(k 2) for k 2 > kij ,  where p r > Or > P~' andyi. > 0 when p > Pi,Yi; < 0 when p < Pi. 
In other words, for a specified value of the constant of the area integral two different steady motions 

of the body are possible corresponding to the same orientation of the body and differing in the value 
of the radius of the orbit (compare with [4-7]). 
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Henceforth, without loss of generality we will consider the solutions (2.8) for which yi = 6j = 1, since 
the solutions of  the torm Yi - 1, [lj = __.1 correspond to geometrically identical solutions. 

3. To investigate the stability of the steady motions we set up the secular equation [3] 

A ( i c )  = ( P l  - l()(P2 - l()(p3 - 1()( 31(2 - 2Kp4 + P5) = 0 

whereps are expressed in a certain way (see below) in terms of the diagonal elements of the matrix of  
the second variation of the reduced potential (n = 1, 2, 3) 

w,, j0' w 2- t j0 = 

(3p2 + a  2) 
i = (  ~2W* ") = .[Ma2p mi a2) 3 

fa w.] k 1. 

3mnp ] 
(p2 + a 2 ) ~  

li = J3 - J I ,  12 ---- J3 - J2 

' 13 = J2  - JI 

Here and hencefo~rth the subscript zero denotes that the corresponding expression is calculated for 
the steady motion considered. 

Consider the following steady motion 

P : Pi,3(k2), YI = I]3 = 1, Y2 = Y3 = 61 = 62 = 0 

0 = Ù01, v = v03 (3.1) 

corresponding to the orientation of the body for which the axis of the least moment of inertia is directed 
along the radius vector, the axis of  the greatest moment of inertia is directed along the normal to the 
plane of the orbit, and the axis of  the mean moment of  inertia is directed along the tangent. 

Here and hencefort h p#(k 2) is the solution of  Eq. (2.6), o~, vq are defined by (2.7) for appropriate 
values of i and j, while the relations 0 = ~. = 0 are common for all the solutions of the form (2.5). 

For the steady motion (3.1) the coefficients of the secular equation take the following form 

Pl = w l l ,  P2 = w h ,  P3 =w77 

P4 = w22 + w15 + w66, P5 = w22w~5 .t- w22w66 -b w15w66 

The sign of Wll is the same as the sign ofy[3(p), i.e. Wn > 0 for p = p~3(k2), Wu = 0 for p = p° 3 
and wll < 0 for p = p~a(k2), while w22 > O, w66 > O, w77 > 0 in view of the fact that./3 > ./2 > J1. 

1 | 2 2 1 1 2 5 To investigate w44 and ws5 we will consider the function gr(x) = mi m7 9- x-  (3x + b) • (x + b)  (x - 2 v J 
b) -e (x = p 2, a = b ). It is obvious that 

lira gi j (x )= +oo, lim g i j ( x )=m2rn f  2 
x-->b+ x--.)+oo 

whereg~(x) < 0 for anyx > b. Hence, we obtain thatgij(x) > I when m i > mj andg#(x) < I otherwise. 
The function g12 > 1. Consequently w~4 > 0 and w~5 > 0, and also (taking the relations w22 > 0, 

w66 > 0 into account) we havep4 > 0 andp5 > 0. 
Hence, the four roots of the secular equation corres~ponding to solution (3.1) are always positive, 

while the root ~q = Wll is positive for the branch p = P 13(k2) and negative for the branch p = p~3(k 2) 
Thus, the degree of instability of solutions (3.1) is equal to zero for p = p~3(/~) and equal to unity 

for p = p~a(k~). 
Consequently, the steady motions (3.1) are stable in the secular sense if p = p~3(k 2) and unstable if 

p = pi3( ). 
For steady motion 

P=Pl2(k2),  YI =[~2 =l ,  Y2 =Y3 =61 =~3 =0,  0--(~Ol, VmVo2 (3.2) 
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corresponding to the orientation of the body in which the axis of the least moment of inertia is directed 
along the radius vector, the axis of  the mean moment of inertia is directed along the normal to the 
plane of the orbit and the axis of the greatest moment of inertia is directed along the tangent, we similarly 
obtain that the degree of instability of solutions (3.2) is equal to unity for p = p'~2(k 2) and equal to two 
for p -- pf2(k') (for these solutions one of the roots of the secular equation is always less than zero, 
three others are always greater than zero, and one changes sign when p = p°2). 

Consequently, the steady motions (3.2) are unstable if p -- p~2(k2), while the steady motions p = 
1~2(k2), generally speaking, gyroscopic stabilization is possible. 

In Fig. 1 we show the form of the section of  space p, ~, y, 13, k by the hyperplane "tl = 1, 133(2) -- 1, 
Y2 = Y3 = 0, 131 = 132(3) = 0, ~ = 0; the numbers 0(1) and 1(2) indicate the degree of instability of the 
corresponding steady motions. 

4. Consider the steady motion 

P=P23(k2), T2=~3 =1, ~/I ='Y3=~I =~2 =0, ~=~02, v=v03 (4.1) 

corresponding to the orientation of the body in which the axis of the least moment of inertia is directed 
along the tangent to the orbit, the axis of the mean moment of inertia is directed along the radius vector, 
and the axis of the greatest moment of inertia is directed along the normal to the plane of the orbit. 

For steady motion (4.1) the coefficients of the secular equation take the following form 

p , - - w , , ,  = w , , ,  p ,  = + + w7 , -- + ÷ w ,w77 

The sign of  Wll is the same as the sign o fy~ (p ) ,  i.e. Wll > 0 if p = p~3(k2), Wll = 0 if p = pO and 
W11 < 0 if p = 023(k'). Obviously, w22 > 0, w55 > 0, since m2 > m3, while w66 > 0, w77 > 0 sinog J3 > 
J2 > J1. 1/2 The functiong21(x) = 1 whenx  = x~a. Consequently, w~33 > 0 if p ~ (a; P~a = (x~a ) ) ,  w33 = 0 if p 
= P~a and w~a3 < 0 if p ~ (P~a; +°°),P4 > 0 andp5 > 0. By what was said above the root r l  = wn is 
positive for the branch p = p-~(k 2) and negative for the branch p = f~(k2), ~:2 > 0 for p ~ (a, p~) ,  ~:2 
= 0 for P = P~3 and ~:2 < 0 for p ~ (p~; +oo), while the remaining three roots are always positive. 

Depending on the parameters of  the oroblem gl = mlm31, g2 = m2m31, two versions of the position 
of the points po,  P~a are possible: (a) p~, > p~,  Co) pO, > P~a. 

Consequently, the steady motions(4.1) in case (a) are unstable ifp ~ (a; P~3) O (0923; +oo), and unstable 
in the secular sense if p e (P~a; fl~3), while in case (b) they are unstable if p E (a; p~) U (P~3; + oo) 
and stable in the secular sense if p ~ (P23, P~3), where in this case p~  ~ +oo is gl ~ g2. 

For the steady motion 

pmP21(k2), '~2 =~l--1, )t ! --)'3 =~2 =~3=0,  t~--O'02, V=V01 (4.2) 
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Fig. 1. 
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corresponding to tile orientation of the body in which the axis of the mean moment of inertia is directed 
along the radius w:ctor, the axis of the least moment of inertia is directed along the normal to the 
plane of the orbit, and the axis of the greatest moment of inertia is directed along the tangent, 
we similarly obtain that, de0Pending on the parameters ~tl and tt2, the steady motions (4.2) in case (a) 
are unstable if p ~ (P~I, P21) and unstable in the secular sense if p ~ (a; P~l) O (p2°1, +oo), while in 
case (b) they are unstable if p ¢ (P2°l, P~I) and unstable in the secular sense if p ¢ (a, pox) U 
( P ~ l ,  + o o ) .  

In Fig. 2 we show the form of the section of the space p, ~, y, 13, k by the hyperplane "/2 = 1, 
1~30) = 1, ~'1 = 3'3 = 0, ~2 = 131(a) = 0, O = 0, where the numbers 0(1), 1(2) and 2(3) indicate the degree 
of instability of the corresponding steady motions. Note that at the points $23(1) the degree of instability 
of the corresponding motions changes despite the fact that at these points, it would appear, there is 
no branching of the solutions. In fact, at these points the expression w23(P21) vanishes and from solutions 
(4.1) and (4.2) the steady motions for which 

y 2  4- ( ~ 2  -- l )  2 + Y2 2 + Bi(3)2 4" B 2 4" ([~3(1) -- 1) 2 4- 0 2 ;e 0 

branch off. The branches corresponding to these solutions emerge from the sections indicated in 
Fig. 2(a), (b). 

The orientations of the body for which the axis of the greatest moment of inertia is directed along 
the normal to the plane of the orbit while the axis of the mean and least moments of inertia do not 
coincide with the radius vector of the centre of mass and the tangent to the orbit correspond to these 
solutions. 

o 
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I I 
I I 
I I 
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• ~.0.60) r ~&8,C*') 

(a) 

Fig. 2. 

(b) 
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Note. If I l l  " - )  ll,'x ---) +0 then p~  --* +.o. This means that secular stability of the steady motions of a body with 
a triaxial ellipsoid of inertia, close to an ellipsoid of revolution is possible if the axis of least moment of inertia is 
directed along the tangent to the orbit, the axis of the mean moment of inertia is directed along the radius vector, 
while the axis of the greatest moment of inertia is directed along the normal to the plane of the orbit (it is assumed 
here that the least and mean moments of inertia are close but not equal to one another (see also [4])). 
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5. In a similar way we can investigate the stability of the steady motions 

p= :P32(k2) ,  "y3 =[~2 =1 ,  Yl =Y2 =131 =1~3 = 0 ,  G = O 0 3 ,  V=V02,  (5.1) 

p=P31(k2), y 3 = ~ l  =1 ,  T l = T 2 - - ~ 2 = [ ~ 3 = 0 ,  O = ( I 0 3 ,  V=V01 (5.2) 

which correspond to orientations of the body for which the axis of the greatest moment of inertia 
is directed along the radius vector, the axis of the mean moment of inertia is directed along the 
normal (5.1) or along the tangent (5.2), and the axis of least moment of inertia is directed along 
the tangent (5.1) or along the normal (5.2). 

In Fig. 3(a)-(c) we show the form of the section of the space p, O, % 13, k by the hyperplane ~/2 = 1, 
~3(1) = 1, Y1 = ~/3 = 0,, ~2 = [~1(3) = 0, O = 0 and we also show the degree of instability of the corresponding 
steady motions. 

At the points SJz(1) and S]~(1) the degree of instability of the corresponding motions changes and the 
steady motions for which 

YI 2 + (Y3 - 1) 2 + Y22 + ~2(2) + ~32 + (~2(1) - 1) 2 + 02 ~ 0 

are branched off from the solutions (5.1) and (5.2). The branches corresponding to these solutions 
emerge from the sections shown in Fig. 3(a)-(c). 

Orientations of the body for which the axis of the mean (least) moment of inertia directed along the 
normal to the plane of the orbit while the axis of the greatest and least (mean) moments of inertia do 
not coincide with the radius vector of the centre of mass and the tangent to the orbit correspond to 
these solutions. 

6. In conclusion we will compare the results obtained with the results of an investigation of the 
"satellite approximation" for the potential of the gravity forces. In the latter case it is assumed that 
e = a/p ~ 1, and we must confine ourselves to that part of Figs 1-3 for which this assumption is 
satisfied. Then, for solutions of the form (3.1) and (3.2) the results obtained in Section 3 agree with 
the corresponding results for the case when the "satellite approximation" is used (see, for example, 
I1]). 

For the solutions (4.1), (4.2) and (5.1), (5.2) in the general case there is no exact agreement. It occurs 
only when the quantity 

8=  min ((mi-mj)/mt) 
(i,j,k )~S3 

differs from zero by a certain finite number (see Fig. 2a and Fig. 3b). If 8 ~ 1, the points $23 and 
$32 on the branches indicated by the plus sign (see Fig. 2b and Fig. 3a and c), may depart to infinity 
and the relation e ,4 1 can be satisfied for them. Hence, the "satellite approximation" does not 
enable one, in particular, to detect the possibility that "nontrivial" steady motions will exist and the 
presence of secular stability of the "trivial" steady motions for which the axis of the least moment of 
inertia of the body is not directed along the radius vector, even when the assumption that the dimensions 
of the body are small compared with the radius of the orbit of its centre of mass is satisfied, if in this 
case the ratio of any two moments of inertia of the body is close to unity (see also [4, 8]). Note that the 
latter certainly occurs for many natural celestial bodies. 
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